
JOURNAL OF COMPUTATIONAL PHYSICS 82, 348-361 (1989) 

An Improved Method of Calculating Flux Coordinates* 

JAMES A. ROME 

Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831 

Received April 12, 1988; revised July 22, 1988 

The twisty nature of stellarator geometry can be “hidden” from many calculations by basing 
a coordinate system on the twisty flux surfaces. A particularly good choice for this flux coor- 
dinate system, developed by A. H. Boozer, has straight field lines and a Jacobian that depends 
only on the magnitude of the magnetic field, B. Boozer’s original method of generating the 
coordinate system had ditliculty in determining the correct harmonics when the rotational 
transform, t (the number of times a field line twists around the torus in the short direction for 
each transit in the long direction), is rational (t=n/m) and when the transform per field 
period is large. With this improved method, two field lines are used to calculate Boozer’s flux 
coordinates on a given flux surface. This splits the spectra so that adjacent toroidal mode 
numbers are assigned to different spectra, and the correct amplitudes of overlapping 
harmonics can be determined. 6 1989 Academic press. inc. 

INTRODUCTION 

Stellarators are toroidal fusion devices that create magnetic confinement 
geometries for charged plasma particles. The magnetic field lines twist about a torus 
on a set of nested surfaces known as flux surfaces. The charged particles travel 
freely along the magnetic field lines and drift slowly across them because of 
gradients and curvature of the magnetic field. The rotational transform, t, measures 
the twist of these field lines about the torus. To make the field lines encircle the 
torus poloidally (the short way around) without using any current in a plasma, the 
flux surfaces must be made to assume a twisty, roughly helical shape. Conventional 
stellarators and torsatrons use sets of magnetic coils, which are wrapped helically 
about the torus to create the desired magnetic topology. Generally, the coils are 
periodic in the toroidal angle, resulting in N field periods, each of which exhibits 
the same magnetic topology. A complete review of stellarators is given in Reference 
Cll. 

To analyze stellarators with unbroken, nested flux surfaces, it is useful to trans- 
form into a coordinate system that is based on flux surfaces. In the new coordinate 
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system, the flux surfaces are nested circular tori, and the geometry appears to be 
simpler. 

Boozer devised a set of flux coordinates [2] for stellarators that have straight 
field lines; using these coordinates can simplify the physics of orbits as well as 
increase the speed of calculations. For curl-free magnetic fields, the guiding-center 
orbit equations in Boozer coordinates (BCs) take a particularly simple form, which 
depends only on the magnitude of B. In addition, the fast motion along a field line 
is separated from the slower motion across the field lines and flux surfaces. 

Previous methods for numerically calculting the BC system [3] had difficulty in 
two cases: (1) when the surface has a rational rotational transform and (2) when 
the rotational transform per period (t/N) is high. In each instance, it becomes 
difficult to make accurate identification of the Fourier harmonic mode numbers and 
their amplitudes. 

The improved method, embodied in the computer code MAGC2, overcomes 
these problems by integrating along two field lines; this separates the Fourier spec- 
trum into two spectra, which have separated toroidal mode numbers. As a result, 
more precise results can be achieved, especially near the last closed flux surface of 
the plasma. 

BOOZER COORDINATES 

Although this discussion specifically concerns the vacuum case, the methods 
presented here are also valid for finite beta equilibria. 

The magnetic field has a covariant representation, 

B=Vx+PV$, 

and a contravariant representation, 

(1) 

B=VtjxW,. (2) 

27c$ is the toroidal flux, and 19~ is the label of a field line. Dotting the two represen- 
tations together gives an equation for the Jacobian, 

IB12=Vp(V$xV&,). (3) 

The periodicities of the torus can be made more obvious by introducing a toroidal 
angle cp and a poloidal angle 19 related to x and 8, by 

x =d$)cp + I(ti)R (4) 
e=e,+t(+)q. (5) 

In these equations, g($) is (&4x) times the total poloidal current outside a flux 
surface (mks units), and I($) is (p0/47c) times the total toroidal current inside a flux 
surface. For the vacuum case, I= 0 and g = constant. 
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Thus, our aim is to find a more accurate method of calculating the BC represen- 
tation of any quantity of interest. For example, the amplitude of the magnetic field 
and the real space cylindrical coordinates are given by 

w, 8, d = c khv CO+NV - me). 

R(t), e, cp) =c R,, cos(nNcp - mtl), 
n.m 

(6) 

(7) 

.W, 0, d = c Z,, sin(nNcp - me), 
n,m 

(8) 

@W, 4 44 - cp = 1 @,, WnNq -me), 
n,m 

(9) 

This representation also assumes that the stellarator of interest has the usual reflec- 
tional symmetries, that cp = 0 is defined at a symmetry plane, and that 8 = 0 is 
defined on the equatorial plane; that is, the field line label 8, is defined to be zero 
at cp = 0, 8 = 0. N is the number of field periods in the device of interest. 

Field line started at 

FIG. 1. The amplitudes of the lBl Spectra started at the two symmetry lines on the same flux surface 
are essentially identical. The dashed lines are the locations of the M = 0, n = 0, 1, 2, .., harmonics. Above 
these lines are the m = - 1, -2, -3, harmonics, and below them are the m = +l, + 2, + 3, 
harmonics. 
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To calculate this set of flux coordinates, Boozer devised a clever method which 
is local to a flux surface and which does not require that the location of the surface 
be known a priori. Details are given in Ref. [2], but a brief summary follows. In 
the vacuum case, x = 1 B dl is the scalar potential for the magnetic field. A magnetic 
field line is integrated around the torus long enough to “cover” the surface, empiri- 
cally about 3.5/t times around toroidally. x is the independent coordinate for the 
integration. 

Because the quantity of interest (e.g., IBl) is only quasi-periodic along the field 
line, it is necessary to “window” the function by multiplying it by a function that 
goes to zero at the ends of the sampling interval. A gaussian is particularly suited 
for this because its Fourier transform is also a gaussian. The windowed function is 
sampled with enough samples to satisfy the Nyquist criteria, and it is subjected to 
a l-dimensional fast Fourier transform (FFT). The resulting spectrum consists of a 
set of sampled gaussians, as shown in Fig. 1. The peaks of the spectrum occur at 
positions given by 

position = (x,,,/g)(nlv-tm), (8) 

where xmax is the length of the original integration along the field line. 
The spectrum makes it possible to obtain very accurate values for t by finding the 

best match for all of the peaks in the spectrum. 

IDENTIFICATION OF SPECTRAL PEAKS 

To automatically identify the m, n values associated with each peak in the spec- 
trum, the following algorithm is employed: 

(1) The values of g, Z, and $ are calculated using the puncture points (at 
@ = constant) for the flux surface. The puncture points are fitted with a tensioned 
spline, being sure to enforce the required up/down symmetry. The flux is calculated 
by doing an area integral over this surface, and the toroidal current (WI) is 
calculated using a line integral around this surface. 

The calculation of g is more difficult. During the field line integration, the value 
of x = J B dl is stored after exactly one toroidal transit of the machine, together with 
the associated puncture point. Then the poloidal integral of B dl is completed from 
this point to the symmetry point at which the field line was launched. The sum of 
these integrals is 

p, * (poloidal current + k * toroidal current), 

where k is 1 + the number of complete poloidal encirclements of the field line in one 
toroidal transit. 
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(2) Because the windowing function used before taking the FFT is a gaussian 
of the form 

where S is the number of samples, the resulting spectrum is a series of sampled 
gaussians of width 8~*/9.8696044. Since the peak of each gaussian does not 
necessarily correspond to the position of a discrete sample, the peaks near each 
maximum are fitted to gaussians. This procedure yields more precise determination 
of the amplitude and position of each peak. 

(3) The locations of the m = 0 peaks are known (Eq. (7)) without reference to 
t. An important check of the accuracy of the computer run is obtained by being sure 
that these positions line up with peaks of the spectrum. 

(4) t is determined be using the ten largest peaks (except near the magnetic 
axis where fewer peaks are used). The distance of each m # 0 peak should be an 
integral multiple of (t~,,,)/g away from the m = 0 peaks. The distance between any 
two peaks determines a trial value for t. The location of each peak is tested against 
Eq. (7) for the 224 nearest n values, and for (typically) - 15 6 m < 15. The correct 
value of + is the one that gives the lowest square of the risiduals of Eq. (7) for all 
peaks. Then the value of t is relined by using the values of all of the peaks above 
some minimum cutoff value. 

(5) With t determined, it is straightforward to find the m, n values for all of 
the peaks using Eq. (7), except near rational surfaces, as will be discussed below. If 
there is some uncertainty about the assignment of a given peak, in accord with the 
fact that the spectra decay with increasing m, the harmonic is assigned to the closest 
m = 0 peak. Even near rational surfaces, the spectral identification can often be 
made by using the assignment of the peak on neighboring flux surfaces. This 
strategy fails near the magnetic axis when the peak emerges from the noise level, 
and near the edge when the spectra overlap. 

DIFFICULTIES WITH THE METHOD 

If t = nN/m (a rational surface), it becomes difficult to uniquely identify the n, m 
values associated with a particular peak. For example, in Heliotron (N = 19), if 
t= 19/12, the positions of the peaks for n = 0, m = 12, and n = 1, m = 0 coincide. 

Ordinary, as shown in Fig. 1, the harmonics decay for increasing Jml, although, 
as shown, the largest harmonic associated with a given n moves to lower frequen- 
cies as n is increased. If t/N is small, the peaks associated with each n value are 
isolated. However, for a high-transform machine such as Heliotron or the heliacs, 
if t/nN z m, the spectra will overlap and the individual gaussian peaks will combine. 
Estimates of the amplitudes of the two overlapping peaks can be completely wrong 
if a small peak lies on top of a large one. 
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There is yet another difficulty with using Boozer’s method on rational surfaces. 
It is necessary to do integrals along the surface to find g and I and to do area 
integrals of the surface to determine the toroidal flux, $. Rational surfaces separate 
the puncture points and make these integrals more inaccurate. For heliac configura- 
tions, the connectivity of these points can be difficult to determine automatically. 

SPLITTING THE SPECTRUM 

As stated earlier, to generate flux coordinates, it is important to select a field line 
that starts at a symmetry point on each flux surface. In addition to reducing the 
Fourier series to either a sine or a cosine series (according to whether the function 
is odd or even), this choice is also required to relate the coefficients on one surface 
to those on neighboring surfaces. Because the real-space coordinates can be 
expressed in BCs using Eqs. (7t(9), we know a priori that @ = cp and that Z= 0 
when cp = 0 and 8 = 0. Thus, there is really a line of symmetry (with a point on each 
flux surface) along which the field line integration can be begun. 

An additional question involves the value of x at the beginning of the field line 
on this symmetry line. If x were other than a constant independent of tj, there 
would be a II/ component of B. We know that there can be no 1+5 component of B 
on the symmetry line, so the constant is independent of $ and we can set it to zero. 
Finally, there are two symmetry planes per field period for stellarators of interest, 
thus, two symmetry lines can be used. One symmetry line occurs (for a conven- 
tional torsatron) underneath the helical coil at the @ where the coil crosses the 
equatorial plane. The other is halfway between the helical coils, also on the 
equatorial plane. Thus, for the 19 field period Heliotron-E, the planes occur at 
@ = 0 and 7r/19. 

One might ask “What is the relationship of the amplitudes of the Boozer 
harmonics obtained from the two choices of symmetry line?” Since 19 is the same for 
each starting point and cp is slipped by half of a field period, the relationship is 

A:,=(-l)“A,Z,, (11) 

where A,,,, represents the n, m harmonic for any quantity of interest. If we add the 
two resulting spectra, we will have only harmonics corresponding to n = 0, 2,4, . . . . 
if we subtract them, we will obtain the harmonics corresponding to 
n=-1,1,3,5 )... > 0, m > 0 location’ 

The net effect of adding and subtracting the spectra is to spread out the 
harmonics, avoiding spectral overlap. Figure 1 illustrates the spectra for IBI 

’ We included - 1 in the latter spectra because we use the spectrum only for positive frequencies. 
Terms with II = -1 and with m large and negative can occur at positive frequencies. After the harmonic 
is identified, it is assigned to its correct n. 
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obtained by integrating along the @ = 0 field line. The amplitude spectrum at 
@ = 7c/19 is essentially identical. To illustrate the process more clearly, we have 
chosen an interior flux surface for a model Heliotron-E (based upon toroidal 
corrections to a straight stellarator [4], where the harmonics are already well 
separated. Figure 2 displays the sum spectrum and the difference spectra. The 
method reduces the cancelling terms in this case by three to four orders of 
magnitude. The peaks that add have the average of the amplitudes and positions of 
the peaks from each of the two spectra. 

R=2.30m ~ 

1-1 B Difference Spectrum 

FIG. 2. The sum spectrum has harmonics for only even values of the toroidal mode number n. The 
difference spectrum has harmonics for only odd n. 
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ERROR CONSIDERATIONS 

When double precision is used on a VAX computer, this method of deriving the 
BCs has a dynamic range of about six orders of magnitude. To maintain this range, 
the average (m = 0, n = 0) term is always subtracted before the FFT is performed. 
The reduction in amplitude of the unwanted peaks in the sum or difference spectra 
is usually two or three orders of magnitude. The two-field-line method depends 
crucially on the condition that both field lines are really on the same flux surface. 
Accordingly, after the first field line is integrated, a puncture plot of the half-sym- 
metry plane is produced, and the starting point in this plane is determined. This is 
discussed in more detail in the section entitled “Rational Surface Considerations.” 

The reduction in the amplitude of the unwanted peaks is quite sensitive to the 
proximity of the second field line to the first flux surface; however, the peaks that 
add are quite insensitive. Thus, a method for discriminating against unwanted 
peaks is required. 

The primary method for automatically accepting peaks and assigning them to 
their correct A,, is to examine the frequency of the peak. The frequency must line 
up closely with the frequencies given in Eq. (7). In the two-field-line method, the 
peaks in the sum spectra are assigned only to even n, and those in the difference 
spectra are assigned only to odd n. Remarkably, the small peaks that result from 
the cancellation of two large peaks often line up with the correct peak locations for 
the n to either side of the unwanted n values. These peaks are clearly spurious 

I-l B Spectrum RsTART= 2.464sl 

REAL PART 

Phi = 0 

hds) Wn -+m) 

FIG. 3. The IBI spectrum on a near rational surface (t-g) near the edge of the plasma is quite 
complicated. The harmonics for different n overlap, and the spacing between all peaks is a multiple t/g. 
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[BlSum Spectrum 

FIG. 4. For t- 8, the sum spectrum reduces the amplitudes of peaks corresponding to odd n by 
almost 2 orders of magnitude. As shown in the inset, the width of these unwanted peaks is much 
narrower, allowing them to be discriminated against. Note that the reduced value of the n = 2, rn = 12 
peak has been correctly uncovered from underneath the n = 1, m = 0 peak. 

because their amplitudes vary wildly according to the closeness of the match of the 
two flux surfaces and are small in any event. Fortunately, their width is much 
narrower than that of the correct peaks. Since the width of the gaussian peaks is 
known analytically, it is a simple chore to reject any peaks that are narrower than, 
for example, 75% of the correct width. 

Figure 3 shows the lB/ spectrum on a near-rational (tz g) outer flux surface for 
this model Heliotron-E field (which has a lower t than the real machine). The 
spectrum is quite complicated, and the harmonics for different n overlap. In the sum 
spectrum of Fig. 4, the desired peaks are the wide ones, and the rejected peaks are 
the narrow ones. Consider, for example the n = 1, m =0 and n = 2, m = 12 
harmonics. The both lie on the first vertical dashed line, but the latter peak’s 
amplitude of about 2 x lop4 has been “pulled out” from underneath the first peak’s 
larger amplitude of about 2 x lo-*. Similarly, the difference spectrum of Fig. 5 
allows more accurate determination of the n = 0, 3, 5, . . . harmonics. 

Figure 6 shows the automatically assigned harmonic spectrum for this case, and 
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FIG. 5. For t m #, the difference spectrum determines the correct amplitudes of harmonics such as 

1-1 S Difference Spectrum 

n=l,m=6,7,8andm=-l-2. 

s: 
d 

I 

J 
FIG. 6. Classification of harmonics. MAGCZ uses the information from both field lines to provide 

more accurate assignment of the n and m values to each peak of the Fourier spectrum. 
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ReconstructedlB( 

Error*1 00 

FIG. 7. The magnetic field along the field line can be reconstructed from the harmonics and 
compared with the original to determine the error. 

Fig. 7 shows the reconstructed (BI along the field line and the resulting error. Thus, 
when two field lines are used, assigning the correct n, m values is a much easier and 
more accurate chore than if only one field line were used. 

RATIONAL SURFACE CONSIDERATIONS 

The preceding strategies serve well for assigning the correct n, m values to the 
harmonics on near rational surfaces, but correctly calculating $, g, and Z and the 
starting point for the second field line proves to be tricky. Figure 8 shows the 
puncture points (circles) of the first field line at the two @ symmetry planes for the 
surface where tz #. The first field line was started at R = 2.4645 m. No puncture 
points can be seen near the midplane at the outside of the flux surface. The solution 
to this dilemma is to lit a tensioned spline to the data points (solid curve). The x 
is the selected location for the start of the second field line. 

Because the spline would pass through all of the data points, it would cause 
oscillations in the fitted curve if all of the data points were used, especially if they 
were to occur in clumps. We apply an algorithm that uses only data points more 
than a given distance apart. In addition, only the points for Z>O are used; the 
surviving points are reflected in Z to enforce symmetry. We then use the routines 
KURVPl and KURVP2 from FITPACK, a computer code devised by A. K. Cline 
and R. J. Renka of the University of Texas at Austin. The tension parameter is set 
to 1. The success of the method is judged by how well the cancelling harmonics are 
reduced. 
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OTHER IMPROVEMENTS IN THE METHOD 

Even small errors in g or t will accumulate and lead to secular error growth over 
long orbit integration periods. We have two methods for combating this. The value 
of g(ll/) is adjusted until the average value of @-x/g (cp = x/g in the vacuum case) 
is as close to zero as possible before the Fourier decomposition of @- cp is 
performed. Then, IBI is reconstructed from its Fourier harmonics and + is varied 
slightly until the secular growth of the average error is reduced. Values of t good 
to five significant figures can be achieved in this manner. 

Rstart=2.4645m 
&tart =O.Om 

Start of 
first field 

’ line 
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I 

m 
67 
'1.9 .Q 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.4 2.5 
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Start of 
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FIG. 8. Puncture plots in each symmetry plane for the rational surface near t= jj in the model 
Heliotron-E. The solid lines are the tits achieved with the tensioned spline routine KURVPl using a 
tension parameter of 1.0. 
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1-1 B Harmonics 
n=l,m=l 

n=O,m=0(*.05) 

n=2,m=3 

n=O,m=-2 

n=l,m=4 

n=l.m=3 

n=O,m=- 1 
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Psi 

FIG. 9. The IBI harmonics for the model Heliotron-E. Only the largest harmonics are shown, and 
the dc term is multiplied by 0.05. 

SUMMARY AND CONCLUSIONS 

This improved method for calculating Boozer’s flux coordinates overcomes 
several limitations of previous methods. Figure 9 displays the set of harmonics for 
lB1 (the dc term is multiplied by 0.05). The harmonics display the smoothness in + 
that is required for the $ derivatives of the harmonics in the orbit equations. Also, 
there is no misassignment of harmonics, even on the outer flux surfaces. 

On a VAX 8600, it takes 2-3 cpu h to calculate the Boozer coordinates on 20 flux 
surfaces if the Biot-Savart law is used to calculate the magnetic field from wire 
filaments. For the present analytic field, the calculation took about 1 h. It should 
be pointed out that with this method, the length of field line that is followed does 
not increase if the flux surface is near rational; each field line is followed for about 
35 toroidal transits. 
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